

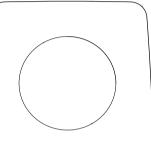
Original declaration of incorporation with manual for

ARIS Valve Actuator Ventaris TE

After first start (RE blinks in the display), the end positions must be adjusted.

Table of contents

1.	Identification	3
1.1	Typeplate	
1.2	Guidelines and standards	
2.	Safety information	,
2.1	Warnings	
2.2	General safety advices	
3. 3.1	Technical specification	
3.1 3.2	Function and application areas (Intended use)	
3.3	Dimensions	
3.4	Performance data	
3.5	Expected lifespan and intended disposal	
4.	Actuator setup for operation	
4.1 4.2	Transport, (temporary) storage and downtimes	
4.2	Packaging	
4.4	Installation and mounting	
4.5	· ·	
	Initial operation	
5.	Actuator operation without optional modules (Standard)	
5.1 5.2	Operation	
3.2	rrogramming the end positions (setup mode) without optional modules	I 3
6.	Operations with optional modules	14
6.1	LED display module (additional board)	
6.2	Potentiometer (electronic via additional board)	
6.3	Additional auxiliary switches S1-S4 (add-on board)	
6.4 6.5	Programming of setpoints without 7-segment display	
0.3	Programming of setpoints wit 7-segment display	
7.	Operation of actuators with microprocessor controller I-ACT (PMR)	
7.1	Wiring diagram and pin configuration	
7.2	Configure controller connection	
7.3	Operating and display elements	22
8.	Operation of the I-ACT (PMR)	22
8.1	Automatic and hand mode	
8.2	Setup model-ACT (PMR)	23
9.	Operation of actuators with current output	3(
9.1	Circuit diagram and pin assignment	
9.2	Configuring the function.	
9.3	Operation	
10	Additional options	
10. 10.1	Internal manual override (mechanical)	
10.1	Option Handwheel	
	·	
11.	Parameter RESET	34
12.	Required customer information	34
12.1	Troubleshooting and repair	
12.2	Mains Filter	35
13.	Maintenance	24
13.1	Service	
13.2	Accessories	
13.3	Spare parts	
	• •	


1. Identification

This manual is valid for:

Description: Elektrical actuator Type: Ventaris TE

Serial-no.: YYWW-xxxxx-01001 ff.

1.1 Typeplate

SNr: YYWW-XXXXX-01001

Typ: VentarisTE

85...265 V AC, 50/60 Hz 1,7 mm/s, 600 N, 20 VA

UT -15°C/+60°C IP65

Made in Germany

ARIS Stellantriebe GmbH Rotter Viehtrift 9 D-53842 Troisdorf www.stellantriebe.de

- Serial number
- ← Actuator type
- ✓ Voltage/Frequency
- ★ Actuating time/Force/Power consumption

Ambient temperature/Protection class

1.2 Guidelines and standards

ARIS actuators are partly completed machinery according to directive 2006/42/EC.

Further applicable EC directives: EMC Directive 2014/30/EC DIN EN 61000-3-3

DIN EN 61000-6-2 DIN EN 61000-6-3 DIN EN 61000-6-4

DIN EN 55011
Applied harmonized standards: LVD Directive 2014/35/EC DIN EN 61010-1:2011-07

MachDir 2006/42/EC DIN EN 12100:2011-03

Protection class by housing (IP-Code) Protection class testing DIN EN 60529:1991

EMC considerations of the overall system and system perturbations and their fight have to be treated by the system manufacturer or system operator. The wiring of the actuator should be carried out in accordance with DIN FN 60204-1

2. Safety information

2.1 Warnings

Installation and initial operation only by certified experts according to the manual.

Observe the significance of the following symbol and note explanations. They are subdevided in security levels and classified according to ISO 3864-2.

DANGER indicates a hazard with a high risk degree, which, if not avoided, causes death or heavy injuries.

WARNING indicates a hazard with a medium risk degree, which, if not avoided, can cause death or heavy injuries.

CAUTION indicates a hazard with a low risk degree, which, if not avoided, can cause slight or moderate injuries.

Indicates general advices, useful hints and work recommendations, which don't have influence on the safety and health of the staff.

2.2 General safety advices

The actuator components are conform to the state of the art and apply as generally safe at the time they are shipped. This manual serves as basis to install and operate ARIS actuators safety conform. All persons working with or on ARIS actuators must observe this manual and especially its safety advices.

- This manual has to be kept at the operating place at any time.
- Read the manual carefully prior to installation and initial operation.

While operation of electronic devices certain parts are obligatory under hazardous voltage.

- Working on electric appliances or equipment is only allowed for electrically qualified persons or other instructed persons
 under auidance and custody of an electrically aualified person according to the electro-technical regulations.
- Observe all safety and accident prevention regulations while installing, operating and testing any electrical appliances or machinery.
- Prior to all installation or regular work on the actuator make sure to switch off all connected machinery/appliances.

3. Technical specification

3.1 Functions and scope of application (Intended use)

ARIS actuators are exclusively designed for industrial use. ARIS actuators are utilized for operating regulating and shut-off appliances (valves, ball valves, taps, slide valves, dosing pumps, etc.).

ARIS actuators may not be used for:

- Temperatures below or above the specified data
- Underground environments
- Near open fires
- Under water

3.2 Safe and accurate use

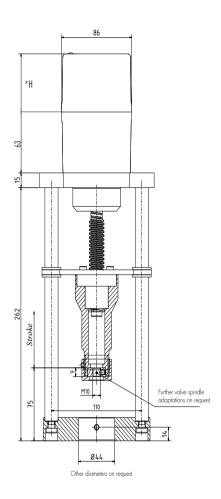
ARIS actuators are factory checked prior to delivery. The final functional testing must be performed within the total system by qualified technical personnel.

The ARIS company assumes no liability for any direct or indirect damage arising from

- an insufficient test period of the actuator in the total system.
- an improper utilization of the actuator.
- a further utilization after an error was detected.

Perform controls on a regular basis during the operation. Pay particular attention to:

- intended utilization of the actuator (Chapter 3.1):
- unusual sounds, severe vibrations or increased temperatures;
- examine the correct tightening torque and impermeability of fixing screws, cable entries, cable glands and sealing plugs;
- the condition of the electrical lines.


Should malfunctions arise, you have to stop the actuator and remedy the malfunction.

All persons who do the installation, commissioning and setting must

- be specially trained and qualified;
- be mentally and physically capable;
- observe the operating instructions.
- Valves, levers and connecting rods are moving during actuator operation.
- Check for proper function of all emergency equipment on your machinery/system.
- Check for proper function of the actuator and operated valves after completion of all installation work.
- Never work with or operate a faulty actuator.

3.3 Dimensions

*H = max. 70mm

actuating power (N)	1000	1000	1000	1000	2000	2000	
actuating time (mm/s)	0,1	0,3	0,5	0,8	0,1	0,3	
actuating power (N)	2000	2000	3000	3000	3000	5000	6000
actuating time (mm/s)	0,5	0,8	0,1	0,2	0,3	0,1	0,3

3.4 Performance data

3.4.1 Actuator specifications

Protection class	IP65 (IP 66/IP 67 Option)	
Motor	 Supply: 85265 V AC (50/60 Hz) / 2448 V DC Protection: Primary: 2A Tr Control: BLDC 50/60Hz ±5%, 100% ED Isolation class E acc. to DIN EN 60085 	
Connection	3 cable entries M16x1.5 (customer provided)	
Path cutoff	Digital via magnet sensor	
Ambient temperature	-15 °C up to +60 °C (other temperature range optional)	
Installation position	Arbitrary	
Potentiometer (Option)	Electronic	
Travel	28°100 revolutions	

3.4.2 Specifications I-ACT (PMR)

Function group flash controller,	Function group flash controller, DSP functions		
System resolution	12 bit		
Set value input	Current input max. 020 mA, burden 250 W Voltage input adjustable 05 V or 010 V Limited protection against overload and reverse polarity		
Actual value transducer	Magnetic position sensor on basic board		
Actual value output	420 mA, 020 mA, galvanically isolated Burden max. 500 Ω , Output stroke max. 10 V Burden 250 Ω , Output stroke 05 V		
Operation	3 buttons: Left / MENU / Right 1 switch: AUTO / MANU Status display via two 7-segment displays		

3.5 Expected lifespan and intended disposal

ARIS actuators have an expected lifespan of several years, depending on their utilization and application. No longer usable actuators must not be dismantled as a whole, but separately recycled in parts divided by their materials. Non-recyclable components must be disposed according to national disposal regulations.

4. Actuator setup for utilization

4.1 Transport, (temporary) storage and downtimes

Use the factory packaging for transport to the installation point.
Replace a damaged original packaging by a new solid packaging.

- Actuators with attached valves: Attach lifting gear only on the valve and NEVER on the actuator;
- Do not use ARIS actuators as a climbing or support aid;
- ARIS actuators must not operate in unsecured lifting operations without additional applications

Damage by wrong storage

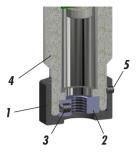
- Store in well-ventilated rooms:
- Protection against possible ground humidity (shelf storage).
- Add moisture-absorbing agents to the actuator during longer periods of storage.
- Protect the actuators from dirt and dust.
- Take measures for prevention of condensation (e.g. at temperature fluctuations).

4.2 Packagina

ARIS actuators are protected by special cardboard packaging at delivery.

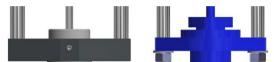
4.3 Safe disposal of packaging

Additionally necessary packaging is made by easily separable packaging materials and can be recycled individually:


- Wood
- Cardboard
- Paper
- Plastics

4.4 Installation and mounting

- Inspect the actuator for damages prior to installation;
- the screw-in depth of connecting thread holes must not exceed 9 mm:
- check leak tightness of cable glands and blank plugs prior to initial operation;
- tighten the cover screws evenly (max. 1.2 Nm);
- do not operate before limit switches have been adjusted:
- protect the actuator against climatic influences (e.g. by a protective cover);
- do not expose the actuator to hard shocks (e.g. by dropping);


4.4.1 Connecting to the valve spindle:

- Place union nut (1) over the valve spindle
- Screw (or set, depending on type) the driver (2) onto the valve spindle
- Tighten the safety screw (3) (depending on type)
- Insert the driver in to the spindle nut carrier (4)
- Screw the union nut on and fix it with the safety screw (5)

4.4.2 Consider prior to attachment of couplings:

Do not turn the thread spindle by force

Installation position: The actuators can be installed position independently.

Protection class IP65 (Option IP 66)

For all actuators observe the following advices:

The initial operation of the actuator is only permitted with orderly closed cover and closed cable entries. Use only cable glands which are appropriate for the respective protection class.

Cable entries

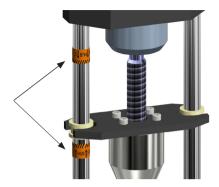
Ensure that all cable entries are closed properly during storage, installation and initial operation.

Use only cables which are suitable for the diameter of the cable entries.

Cover assembly

During the cover assembly make sure that the cover fits correctly. The cover must not show any damages on the joint surface.

Tighten cover screws evenly (max. 1.2 Nm).



No additional bores are allowed in the housing and the cover.

4.4.3 Stroke range

The usable stroke range of 50 mm is marked by decals on the anti-twist protections and my not be overrun.

This may lead to damages to the stroke unit.

4.5 Initial operation

4.5.1 Electrical connection

Hazardous voltage: Possible stroke!

- The initial operation must be carried out only by experts!
- De-energize the actuator before opening.
- Observe the appropriate regulations during electrical installation and initial operation.

Connect the actuator as follows (refer to the wiring diagram at 4.5.2):

- Connect the ground wire of the electric supply to the appropriate protective earth terminal.
- Connect the neutral N to terminal 1.
- Follow the steps under "Set up rotation direction" (S. 13) during connection of the actuator.
- Always refer to the wiring diagram located inside the actuator.

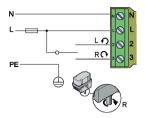
Check before you close the circuit for the first time:

- Is the actuator undamaged on the outside?
- Is the mechanical connection correct?
- Has the electrical connection been made regularly?
- Check if current type, voltage and frequency match with the motor data (see nameplate on cover and inside the actuator).
- Insert suitable cable glands for the connection line.
- Observe the wiring diagram inside the cover.
- Use separate (shielded) wires for low voltages (e.g. potentiometer).
- Set up limit switches prior to initial operation. Observe the direction of rotation (left turn = push direction, right turn = pull direction).

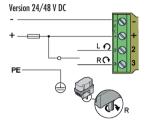
All elements, such as switches, potentiomer etc., are factory-wired. Never change the internal wirina.

4.5.2 Wiring diagram

Connection 85...265 V AC


N	Neutral	conductor

- L Phase / Supply 85 ... 265 V AC
- 2 Control connection > left-turning
- 3 Control connection > right-turning


Connect the ground wire to the housing.

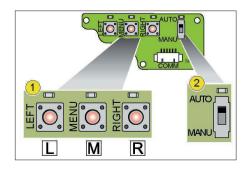
-/+ Connection 24...48 V DC

- 2 Control connection > left-turning
- 3 Control connection > right-turning

The control terminals only have a function if the tensor electronics are operated without the controller module I-ACT (PMR).

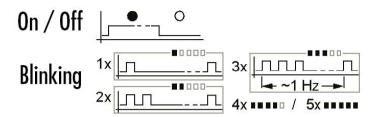
The drive must be permanently energized, otherwise the holding torque is not available!

5. Actuator operation without optional modules (Standard)


5.1 Operation

5.1.1 Buttons and switches

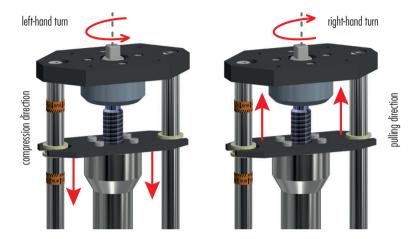
The buttons (1) are marked with LEFT [L]
MENU [M]


RIGHT [R]

Switch (2) changes between automatic and manual mode. In MANU position the setup operation can be turned on from manual mode by keystroke.

5.1.2 LED displays

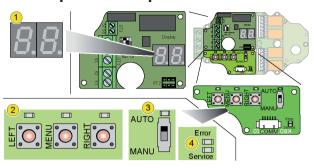
The LEDs on the operation module show information by flashing or blinking.


LED	Status	
LEFT	ON 2x blink	Down shaft rotates left End position reached or override
MENU	ON 2x blink	Supply voltage ON Setup mode active
RIGHT	ON 2x blink	Down shaft rotates right End position reached or override
AUTO AUTO	ON/OFF	ON: Automatic active OFF: Hand mode active
Error ERROF	ON OFF 1x blink 4x blink 5x blink	Current limit active at actuator LI/RE no error Holding current active at motor STOP Sensor error Motor error
Service SERVIC	CE ON/OFF	Status changing every second Microcontroller in function and OK

In case of loss of the mains voltage the MENU LED turns off. After saving the sensor position all LED light until the final loss of the operating voltage. The drive does only have a mechanical holding torque.

5.2 Programming the end positions (Setup mode) without option modules

- In manual mode, press the MENU button for >5s → the menu LED flashes 2x. Now the setup mode is active, the drive can now be moved even over the pre-programmed limits.
- 2. Move the actuator to the left end position using the LEFT button. Hold buttons MENU and LEFT at once. → Left LED is blinking. Hold buttons until the LED flashes permanently → the left end position is now saved.
- 3. Move the actuator to the right end position using the RIGHT button. Hold buttons MENU and RIGHT at once. → Right LED is blinking. Hold buttons until the LED flashes permanently → the right end position is now saved.

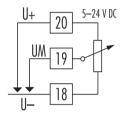


- Quit the programming mode by switching to AUTO mode or by cutting the supply voltage.
- Now the actuator moves only between the programmed end positions.

Left and right end position can be reversed, the allocation of the directions of rotation of the inputs 2/3 and the switch LI/RE does not change as a result.

6. Actuator operation with optional modules

Overview allocation of the tensor menu items to the particular AddOn Boards

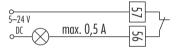

	AddOn PMR		AddOn power output	AddOn Potentiometer		AddOn LED			
Menu		H			L		Function	Parameter	Remarks
EL	√	H	✓	✓	H	√	end position left	no / yes	0100%
ER	√	H	✓	√	H	√	end position right	no / yes	0100%
SL	✓		×	×		×	set value input left		
SR	✓		×	×		×	set value input right	0/4/20/099	099 mA 05V
CL	✓		✓	×		×	actual value output left	05 010	010V
CR	✓		✓	x		×	actual value output right		
db	✓		×	×		×	wire break detection	OF,St, oP, Po, cL	Off/Stop/Open/ Close/Position
PL	×		×	✓		×	Poti left		
PR	×		×	✓		×	Poti right		
RE	✓		√	✓		✓	relay board	s.Chapter 5.3.3	
Ao	✓		✓	✓		×	alarm via fault message output	0/1/2	1,2 active; O inactive
Ad	✓		×	×		×	message control deviation	0:19	1%9%
FI	✓		✓	✓	L	✓	Main filter	05	0FF90%
Hb	✓		✓	✓		✓	switch off hysteresis (b:brake)	08, hysteresis to switch off	080%
Hd	✓		✓	✓		✓	switch on hysteresis (d:difference)	09; hysteresis to switch on	090%
RP	✓		✓	✓	L	✓	RPM speed drop	09	090%
SC	✓		✓	✓	L	✓	Stall Count	15	staring attempts
bL	✓		✓	✓		✓	Block Detection	0: 19	0=OFF, 19%
FR	✓		✓	✓		✓	Firmware Revision		shows firmware
Е	✓		✓	✓		✓	Exit		


6.1 LED display module

The LED display module simplifies the setup of the actuator via a clear presentation of the menu items in the double-digit 7-segment display.

6.2 Potentiometer (electronic via additional board)

Connection configuration


Use only shielded wires

18 GND Poti

19 Output Poti 0...100% (Wiper, output impedance $1 \text{ k}\Omega$)

20 +Ub Poti 5...24 V DC

56, 57 Fault message output (potential free closer max. 200 V/0.5 A)

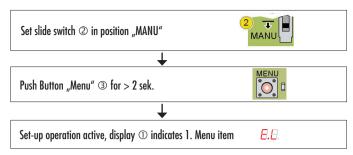
Actual value output of the potentiometer end position

The actual value has to be determined for both stop positions.

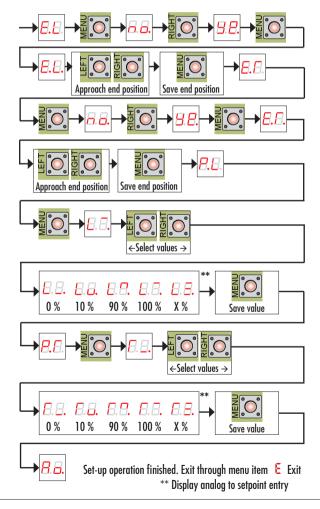
Choose menu item "PL" for programming the left end position or "PR" for the right end position and confirm with button
[M]. The Display indicates a confirmation dialogue.

P

PΓ


• Set the desired value with [R] or [L]. The Display indicates a confirmation dialogue.

 $1... \rightarrow 0\%$ $1... \rightarrow 10\%$ $1... \rightarrow 90\%$ $1... \rightarrow 100\%$ $1... \rightarrow 100\%$

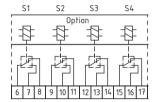

Save the value with the button [M], this will activate the next menu item automatically.

The potentiometer module has to be evaluated in the voltage division circuit in general.

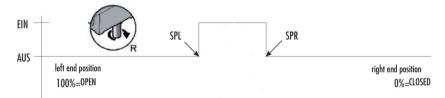
Programming the end position, setpoint input and actual value output:

6.3 Additional auxiliary switches \$1-\$4 (add-on board)

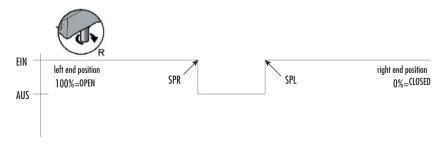
The additional board ZW provides outputs for up to four additional bistable relays with preservation of the switching status in the deenergized condition, to be freely programmed.


Switching points

It can be defined for each relay a left and right switching point.


While moving from LEFT to RIGHT applies to the transitions:

- SPL left switching point changes from OFF to ON
- SPR right switching point changes from ON to OFF



Example switching pattern

By defining and positioning of these two switching points different shift pattern can be freely defined.

Example switching pattern inverted

If no switching point defined, the corresponding relay is not switching. When turning on the power supply all switching points are checked and the relays are preset or possibly switched according to the current sensor position.

Minimum width of the switching point

Both switching points must be different and must have a minimum distance. If they are programmed too close to each other, the switching points are placed with a minimum width (1/512 of the current sensor resolution) around the current position.

Sequential output

The relays are switched sequentially to the current reduction, i.e. if several relays are programmed on one and the same switching position, they are switched on or off in succession of REL1 to REL4, the delay here is max. two program cycles (about 100ms).

Forced circuit

In order to detect even short switching points with fast angle changes each position crossing is stored and then processed and switched sequentially. Here is the minimum switch-on or -off time one cycle (about 50ms). This may lead to a short "tracking" of the switching points.

6.4 Programming of the switching points without 7-segment display

1) Choose programming mode

- In hand mode push [MENU]-button $> 2s \rightarrow$ The menu LED is blinking 2x (see chapter 5.1.2)
- Push [MENU]-button again >4s → The menu LED is blinking 4x

2) Choose relay

The current selected relays is now indicated via the appropriate fast blinking LED. Select the desired relays with buttons [R] / [L]. Confirm with [MENU].

3) Define/delete switching points

Now the switching points can be defined.

Set the desired position via buttons [L] / [R], then save:

[MENU] + [L]: Save left switching position

[MENU] + [R]: Save right switching position

[L] + [R]: Delete both switching positions. Hold both buttons at once, until the appropriate LED (L and/or R) blinks fast and then permanently flashes.

Display of LEDs on the relay board:

Selected relays: - slowly blinking ca. 1x/sec.: no switching position defined

- 1x flash: 1 switching position defined - 2x flash: 2 switching positions defined

Not selected relays: - all showing the actual status of the selected relays (ON / OFF)

To ensure reliable switching even when driving over an end position, it can be run over by about 10° by pressing the L / R button.

4) Select other relays

• Button [M] > push 2 seconds → further see item 2) or 5)

5) Exit programming menu

Switch to AUTO mode.

During loss of supply voltage the current switching states remain unchanged. After switching on again the relay states will be determined and set by means of the current sensor position.

6.5 Programming of the switching points with 7-segment display

1) Select programming mode

- In hand mode push MENU button > 2s → the display shows "EL"
- Select menu item RE via button [R] and confirm with [Menu].

2) Select relays

Select the desired relays with buttons [R]/[L]. The selected relays is shown in the display. The additional fifth menu item E (EXIT) can be selected. Confirm with [Menu].

3) Define/delete switching points

Now the switching points can be defined.

Set the desired position via buttons L / R, then save/delete:
 The actual position is shown (0..100%).

By activating the buttons, the appropriate commands are issued:

- [MENU] + [L] → ¼ (Save Left) Save left switching point
- [MENU] + [R] $\rightarrow 5$ (Save Right) Save right switching point
- $[L] + [R] \rightarrow dE$ (Delete)
- 「MENUI → E (EXIT)

4) Select other relays

Push button [M] > 2 seconds → further see item 2) or 5)

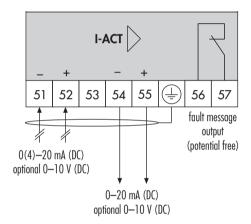
5) Exit programming menu

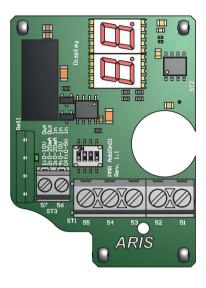
Select menu item E (EXIT) and confirm with [MENU]

7. Operation of actuators with microprocessor controller I-ACT (PMR)

7.1 Wiring diagram and pin configuration

57/56 Message output, potential free opener, max. 200 V,


max. 0.5 A, max. 10 W


55 Actual value output, +

54 Actual value, ground

53 + 5 V supply

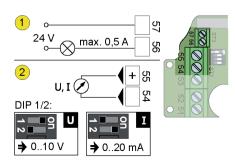
52 Set value input +
51 Set value input, around

All actuators are preset at the factory. When you change the DIP switch, the instructions given here are to be observed!

The function of the inputs and outputs at pin 51 to 55 is set by DIP switches, see section 7.2. The message output is used for operational monitoring.

Message output

The message output (1) Pin 56/57 works as potential free activated opener. The capacity of the contact is


max. 200 V supply

max. 0.5 A

Actual value output

The output (2) at pin 54 / signal terminal 55 is supplying voltage or current depending on the DIP switch setting.

The output is galvanically isolated from the other ports.

Set value input

Via pin 51/52 the controller receives a set value. When connecting a potentiometer (1) pin 53 supplies the encoder with the supply voltage. Via the DIP switches 3 and 4, the controller receives the information for use of input:

- Set value via poti (1)
- Set value as current (2)
- Set value as voltage (3)

DIP 3/4: + 5V 50 + 5V 50 + 5V 50 + 7V 50 - 5V 50 -

7.2 Configure controller connection

To operate a drive control, the DIP switches must be configured correctly and the ports on the controller I-ACT (PMR) connected appropriately.

Setting up DIP switches

Component damage by short-circuit.

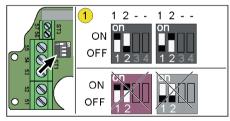
The DIP switches 1-2 and 3-4 switch to the same outputs. If the DIP switches 1 and 2 or the DIP switches 3 and 4 are ON during operation, a short circuit can destroy components.

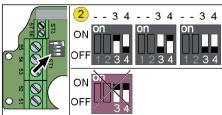
- Do not set DIP 1 and 2 to ON at once
- Do not set DIP 3 and 4 to ON at once

Via DIP 1-2 (1) the actual value output is configured. With DIP 3-4 (2) configure the set-point input.

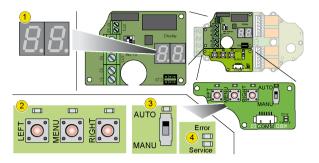
Cut off supply voltage, set up DIP switches:

<u>DIP</u> <u>Actual value output</u>


DIP 1 and DIP 2 to OFF creates an undefined condition.


 DIP
 Set value input

 3 ON / 4 OFF
 0...20 mA


 3 OFF / 4 ON
 0...10 V

3 OFF / 4 OFF 0...5 V / Poti operation

7.3 Operation and display elements

Two 7-segment displays (1) provide information on the controller status and the operating steps. The controller is configured and operated with the three keys (2) and the switch (3). The small LEDs above the buttons and the switch and the two LEDs (4) below the switch indicate various operating states and messages.

8. Operation of the I-ACT (PMR), Current output

8.1 Automatic and hand mode

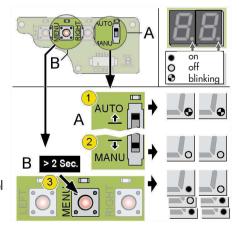
8.1.1 Operation modes

The controller works in three operation modes:

- Automatic: Control mode with surveillance
- Hand mode: Manual left- and right-run of the actuator
- Setup mode: Parameterization of the controller.

8.1.2 Change operation mode

Change the operating modes by using switch (A) and button (B). The two 7-segment fields show the current operating mode through the decimal points.


8.1.3 Automatic mode

Slide switch to AUTO (1).

Both points will flash alternately at 1 Hz; additionally the LED above the switch lights. The control is active.

The actuator is driven via signals from the set value input. The control monitors the approach of end positions and changes of input signals. The buttons (3) have no function.

8.1.4 Hand mode

Slide switch to MANU (2).

Both points and the LED above the switch are off. The control is active and waiting for input via push button. The actuator is operated via the two buttons [R] and [L]. The motor controller is active and switches off the motor upon reaching an end position.

- Hold button [R] to rotate the actuator right. The two segments show a circumferential clockwise dash order as long as the
 actuator rotates.
- Hold button [L] to rotate the motor left. The LED above the pressed button lights. Both segments show a circumferential
 counterclockwise dash order as long as the actuator rotates. Upon reaching an end position, the LED on the operated key will
 blink twice.

8.2 Setup mode I-ACT (PMR)

Survey

The microprocessor controller I-ACT (PMR) can perform the following tasks:

- Set left and right end position
- Set handling shortly before reaching an end position and switching on and off of the motor
- Enter voltage and current values for the end positions
- Activate message output

By changing the switch from manual to automatic the setup mode is left without saving a currently revised parameter value.

Start setup mode

- 1. Slide switch to "MANU".
- 2. Hold down button [M] at least 2 sec.

The setup for parameter setting is turned on, the display shows the first menu item.

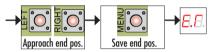
E.L Setup mode active, 1. menu level in display.

To exit the programming mode, slide switch back to "AUTO".

8.2.1 Menu items in detail

8.2.1.1 Programming end positions E.L / E.F

 Select the menu item "EL" for programming the left end position or "Er" for the right end position and confirm with button [M]. The screen displays a confirmation dialog.



Press the indicated button.

Motor or components may be damaged when driving on an obstacle. As long as the end position is reprogrammed, the engine no longer stops at the predetermined end position. For entering new end positions move the drive slowly and with caution.

Move actuator to the desired end position by pressing [L] or [R].

- Accept the current position as end position with the button [M]. If programming is aborted by changing to AUTO mode, the
 previously programmed end position applies.
- Repeat steps for the right end position.

For technical reasons the two end positions must be at least a 28° apart. If the difference range is too little, the controller gives out the error "RE" - "Range Error".

8.2.1.2 Set value input for the end positions 5.L / 5.F

The left and right limit switch position is assigned to a new set value. Voltage or current values at the input terminals 51, 52 provide the controller with the default for the positioning of the motor. The actual position signals to the controller via the terminals 54, 55.

The input must be connected suitably to the DIP switches configuration (3 and 4), see chapter 7.2.

- Select the menu item "SL" or "Sr" and confirm with button [M]. Depending on DIP switch setting one of the following three
 values will be displayed:
 - DIP3/DIP4 ON/OFF: 0 mA / 4 mA / 20 mA / 0...20 mA
 - DIP3/DIP4 OFF/ON: 0... 10 V
 - DIP3/DIP4 OFF/OFF: 0... 5 V
- Voltage or current values must be set according to the following depiction and in accordance to the DIP switches configuration.

4 mA

0 mA (0 V optional)

(2 V optional) (5 bzw. 10 V optional)

Finally save new value with button [M], thereby the next menu item will be activated automatically.

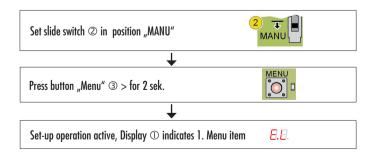
Defaults for the set values of the end positions must cover at least 20% of full scale, otherwise the error "PE" - "Parameter Error" is reported. Example: Range 1..5 V => Covering (5-1) V \times 20% = 0.8 V Lower end position 0.5 V => Upper end position min. 0.5 V+0.8 V =1.3 V

8.2.1.3 Actual value output for the end positions

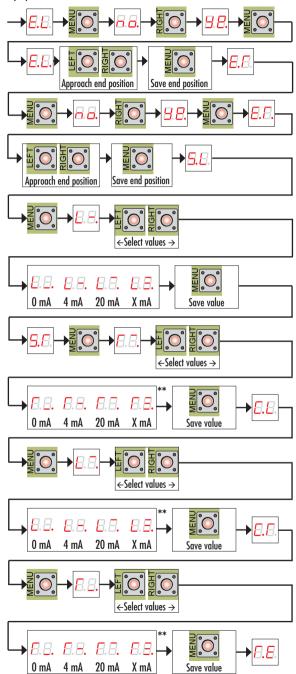
E.L / E.T

The actual feedback must be set analog to the set values for both end positions.

E.L


6.5

- Set with DIP switches 1 and 2 how the actual value is used, see chapter 7.2.
- Select menu item "CL" or "Cr" and confirm with button [M].
- Set the actual value (see 7.2):
 - DIP1/DIP2 ON/OFF: 0...10 V
 - DIP1/DIP2 OFF/ON: 0... 20 mA
- Finally save the new value with button [M], thereby the next menu item will be activated automatically.


Defaults for the actual limits of the end positions must cover at least 20% of full scale, otherwise the error "PE" - "Parameter Error" is reported. Example: Set range 4 mA => Covering 4 mV x 20% = 0.8 mA Lower end position 0.1 mA => Upper end position min. 0.9 mA (=0.1+0.8)

Setup operation I-ACT (PMR)

Programming of the end positions, set value inputs and actual value outputs:

Set-up operation has to be active

^{**} Display analogous to set point default

8.2.1.4 Cable break monitoring db

Cable break monitoring only functions in range 4...20 mA or 2...10 V.

In range 4-20 mA or 2-10 \dot{V} the cable break monitoring detects a failure of the set value signal below a determined threshold. This threshold amounts to 50% of the calibrated minimum value, therefore 2 mA or 1V. At a set value range of 0-20 mA or 0-10 V the cable break monitoring remains functionless.

The performance of the tensor can be set within the menu.

dЬ	Function	Conduct in case of cable break detection
0ff (□F)	no detection	Set value input minimal
Stop (<u>5</u> ≥)	STOP	Actuator stops immediately
Open (P)	Position OPEN / 100%	Actuator drives to 100%
Close (c L)	Position CLOSE / 0%	Actuator drives to 0%
Position (Pa)	programmed failure position*	Actuator drives into programmed position

^{*} When selecting the menu item Po (position) the current position is saved as failure position. In menu itself the actuator can NOT be driven into an other position. For changing the failure position, approach the desired position in hand operation, confirm the selection 'Po' in menu item 'd.b' again. The new position will be saved.

When a cable break is detected the action set in the menu will be performed, the error 'd.b' will be indicated on the display and the fault message output will be set.

8.2.1.5 Fault message output A.o (Alarm out)

The contact to the terminals 56 and 57 is closed when the controller is in operation.

The following events will trigger the opening of the signal contact:

- I-ACT is in hand mode
- >> hF: Motor Frror
- >> 5E: Sensor Error
- >> RE: Range Error
- >> [E: Calibration Error
- >> PF: Parameter Error
- >> db: Drahtbruch (Wire breakage)
- >> ₽♂: Message deviation
- >> 5 \(\): Stall Error

Detailed description of errors see chapter 13.1

Ä.0

Activation:

- Select menu item "Ao" and confirm with button [M].
- Make a choice on basis of the table below (buttons R / L).
- Finally save new settings with button [M]

R _o	Modus	Function	Description
	Manu	Off	Contact open
Α0	Auto	Off	Contact open
Al	Auto	Fault & stall Error	Contact open in the event of a fault
A2	Auto	Fault & stall warning	Contact open in the event of a fault

8.2.1.6 Message deviation Control

Activate

- Select menu item Fld and confirm with button [M]
- Select value 0...9 and confirm with button [M]
 0 (message off)
 - 1...9 (at deviation 1...9% between actual and set value a fault message is issued). Right and left end position as well as parameterized right and left set value are the reference
- Finally save new setting

Rd	
0	Message off
19	At deviation 19% between actual and set value a fault message is issued

Example:

Menu status 2=2%

Right end position 0% [0°] / left end position 100% [90°]. At a distance of 90° corresponds a setting of 2% 1,8°. If the current actual value deviates by more than 1.8° from the current set value default, the signal contact switches (opens).

8.2.1.7 Hysteresis run (motor start and stop)

Start and stop run of the engine can be influenced by a hysteresis function. e.g. to protect the mechanism and to increase the reliability in operation.

H.h

Switch-off hysteresis

H.d

Switch-on hysteresis

With "Hb" (H-brake) the switch-off hysteresis of 0 - 80% is set. "Hd" (H-difference) defines a hysteresis between 0 - 90% for the switch-on run. A value of 0% disables the hysteresis functions.

- Select menu item "Hb" or "Hd" and open the sub menu with button [M].
- Set a value between 0 and 80% (0...8) for Hb or 0 and 90% (0...9) for Hd. The difference of set value and actual value is
 compared with the hysteresis. If this difference is less than the switch-off hysteresis, the drive stops. If its larger than the
 switch-on hysteresis, the drive regulates.

8.2.1.8 Speed reduction

RPM speed reduction when approaching the end position

r.e

- Select menu item "rP" and confirm with button [M].
- Set the value between 0 (=no deceleration prior to approaching the end position) and 9 (=high deceleration prior to
 approaching the end position) in the sub menu.

8.2.1.9 Stall count

The stall-detection recognizes a standstill or blockade of the BLDC-motor. If a blockade is recognized the motor is set into STOP / HOLD mode in order to protect the motor.

The motor tries to start again with a attempts. If the blockade is not rectified, a fault message is issued.

Activate:

- Select menu item ¼ and confirm with [M]
- Select values 1...5. The motor tries to start again according to the value. If the actuator does not proceed after the given number of attempts, the stall-error will be released.
- Remove the blocking reason and program the actuator new. See chapter 13.1.

Setting the starting attempts

SE	
1	The motor starts 1x
25	Amount of the starting attempts

8.2.1.10 Block Detection / Anti-lock

Recognizes the drive into a stop in the end position area and suppresses the stall-error and in order with that a multiple restart attempt of the motor.

Activate:

- Select menu item and confirm with button [M]
- Select values 0...9. Detection zone 0...9% ahead of both end positions.

ЬL	
0	OFF, functions as before
19	Detection zone 19% ahead of the particular end position

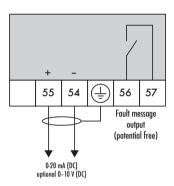
If a stop is detected, this will be interpreted as end position. In order to reset the detection, the actuator must rotate to the opposite direction. If the regular programmed end position is reached, the actuator will shut down.

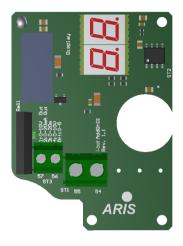
Example: Menu status 2=2% ahead of end position

If the current actual value position reaches more than 98% or less than 2% while opening and closing and an obstacle (e.g. a blockade) is detected, the motor will switch into Hold/Stop mode.

9. Operation of the actuator with current output

9.1 Circuit diagram and pin assignment


57/56 Message output, potential free opener, max. 200 V,

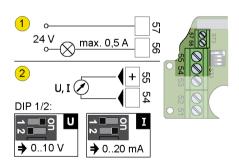

max. 0,5 A, max. 10 W

55 Actual value output, +

54

Actual value output, ground

Fault message output


The message output (1) Pin 56 / 57 works as potential free operated opener. The capacity of the contact is

max. 200 V-supply max. 0.5 A max. 10 W

Actual value output

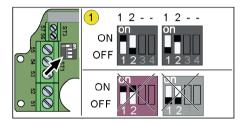
The output (2) at Pin 54/55 provides a voltage or a current according to the DIP-button position.

The output is separated galvanically from the other supplies.

9.2 Configure function

Set DIP-switch

Component damage by short-circuit.


The DIP switches 1-2 and 3-4 switch to the same outputs. If the DIP switches 1 and 2 or the DIP switches 3 and 4 are ON during operation, a short circuit can destroy components.

- Do not set DIP 1 and 2 to ON at once
- Do not set DIP 3 and 4 to ON at once

Via DIP 1-2 (1) the actual value output will be configured. Via DIP 3-4 (2) the set value input will be configured.

Shut down supply voltage, set DIP-switches:

DIP Actual value output

9.3 Operation

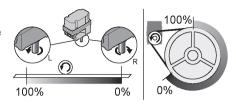
9.3.1 Operation and display elements

Menus

Menus are only given in set-up operation in order to set parameters and values. The function of a menu item arises from an abbreviation consisting of two letters, e.g.: end position left:

E.L determine left end position

Parameter values


The segment display is able to indicate values from 0 up to 100. The value 100 is displayed as a ring across both segments.

Fault message

The controller indicates faults while operation through permanent blinking of an error code. For details concerning the error codes see chapter 13.1.

Actuator movement

The 7-segment display indicates the actuator position and direction of rotation. The actuator position is displayed as %-value from 0 up to 100%. The controller calculates the current %-value from the track between both end positions. The left end position complies with 100%, the right complies with 0%. If the actuator rotates, a circumferential dash across both segments indicates the rotation direction. The running direction of the dash corresponds to the rotation direction of the pinion shaft at sight through the

actuator. Position and rotation direction are displayed in second change while the actuator is running.

Idle mode

If the actuator is not activated for 10 seconds, the display switches into idle mode and shortly indicates the %-value of the actuator position every two seconds. The display exits idle mode as soon as a button is pushed or the actuator is driven.

9.3.2 Displays on the current output

Menus

Menus are only given in set-up operation in order to set parameters and values. The function of a menu item arises from an abbreviation consisting of two letters (see 6.1), e.g.: end position left:

determine left end position (see 6.1)

Parameter values

The seament display is able to indicate values from 0 up to 100. The value 100 is displayed as a ring across both seaments.

Fault message

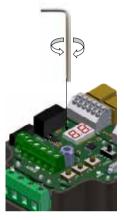
The controller indicates faults while operation through permanent blinking of an error code. For details concerning the error codes see chapter 13.1.

Actuator movements

The display indicates the actuator position and direction of rotation. The actuator position is displayed as %-value from 0 up to 100%. The electronics calculate the current %-value from the track between both end positions. The left end position complies with 100%, the right complies with 0%.

If the actuator rotates, a circumferential dash across both segments indicates the rotation direction. The running direction of the dash corresponds to the rotation direction of the pinion shaft at sight through the actuator. Position and rotation direction are displayed in second change while the actuator is running.

The end postions must be programmed prior to initial operation.


10. Additional option

10.1 Internal manual override (mechanical)

Actuation of manual adjustment with a cordless screwdriver is not permitted because the gearbox can be destroyed due to the high speed!

Rotate the output shaft by use of an Allen key SW4 on the manual adjustment until the desired position is reached. 32 turns on the manual adjustment correspond to a complete revolution (360°) of the spindle.

Das Handrad dreht sich im ausgekoppelten Zustand nicht mit.

10.2 Optional Hanwheel

Risk of mechanical impact!

The handwheel may only be operated when no voltage is applied!

- 1. Switch off the operating voltage of the actuator.
- Press down the handwheel and turn it in the desired direction.Set positions are retained.
- 3. After reaching the desired position, release the handwheel (the coupled state is released when the handwheel is in its initial position again). The hand wheel does not rotate in the decoupled state.

11. Parameter RESET

The Parameter-Reset-Function is implemented in order to restore the factory settings.

Perform the Parameter-RESET:

- Switch into HAND-Modus in de-energized state
- Hold buttons L+R down
- Turn on power supply and hold buttons down
 - a) LED L+R blink slowly (approx. 4 s)
 - b) LED L+R blink fast (approx. 4 s)
 - c) LED L+R light permanently
- Release buttons

12. Required customer information

If it is not possibly to remedy the malfunction, please inform your ARIS contact person.

Advices at: www.stellantriebe.de

12.1 Troubleshooting and repair, error codes

Hazardous voltage: Possible stroke!

- Troubleshooting and repair only by experts!
- Cut off voltage before opening the actuator.
- Risk of crushing at rotating elements!

We recommend a repair at the ARIS factory.

More information under: www.stellantriebe.de

Error messages

If the 7-segment display is present, error messages occur according to the table on the next page. Automatic and manual operation can not be used as long as a fault is present. The setup can be started.

Display	Function	Meaning	Remarks
ьЕ	Motor Error	No valid values for motor control from Hall sensor	Please contact your responsi- ble ARIS contact person
5E	Sensor Error	No valid values from position sensor. No existing magnet or out of valid range	Please contact your responsi- ble ARIS contact person
rЕ	Range Error	Programmed end positions too close	End positions must be > 0.5 sensor turns (corresponding 28°) apart
ΕE	Calibration Error	Actual output value too low Set input value too low	Please contact your responsi- ble ARIS contact person
SF	Sensor Fault	Correlation error, not correctable	Disconnect power supply. After re-energizing the error should not be displayed.
PE	Parameter Error	Too low difference between free set and actual values	At free values, the difference must cover at least 20% of the complete range
5Ł	Stall Error	Standstill or blockade of the motor	Please contact your responsi- ble ARIS contact person
dЬ	Wire break	Wire break detection caused message	Examine control lines and clamps
EE	EEprom Error	Fault in EEPROM Data, inconsistent data, operation no longer possible	Please contact your responsi- ble ARIS contact person

12.2 Mains filter F

Only active at alternating voltage supply.

The digital input filter suppresses ripple voltage and faults on the inputs 2/3 at 50/60 Hz AC operation. The supply voltage functions as reference. The filter can only be set if a 7-segment display is present. For Selection of menu item FI see bullet point 6.

FI	Switching threshold
0	OFF
1	50%
2	60%
3	70%
4	80%
5	90%

Example:

Menu status 1=50%, i.e. at a supply voltage of e.g. 230 V AC voltages below 115 V AC will not be processed at the inputs 2/3.

13. Maintenance

13.1 Service

ARIS actuators of type VENTARIS have a lifetime lubrication and are generally maintenance-free.

13.2 Accessories

No special tools are required for installation.

13.3 Spare parts

Order spare parts at aris@stellantriebe.de any time. Please always state the serial number of the actuator.

Declaration of Incorporation of partly completed machinery

according
EU directive 2006/42/EC Annex II B "Machinery Directive"

Herewith we declare, that the below mentioned incomplete machinery

Product description:	Electrical actuator	
Product Types:	tensor and identical	

Fulfills the basic requirements of the annex I of the directice 2006/42/EC, if it applies to the appropriate order:

1.1.2c,e; 1.1.3; 1.1.5; 1.3.4; 1.5.1; 1.5.2; 1.5.4; 1.5.5; 1.5.6; 1.5.8; 1.5.9; 1.5.11; 1.6.1; 1.6.4; 1.7.3; 1.7.4

The following harmonized standards were applied: DIN EN ISO 12100:2011-03 ("Safety of machinery")

The product is a partly completed machinery accordance with Article 2 letter g of the Directive 2006/42/EG. The special technical documents according to annex VII part B have been created. For reasonable requests these documents can be sent electronically to the responsible authorities.

Regarding the outgoing electrical hazards of the partly completed machinery, the safety objectives of directive 2006/95/EC ("Low Voltage Directive") are complied with in accordance with Annex I No. 1.5.1 of Directive 2006/42/EC. Applied harmonized standard:

DIN EN 61010-1:2011-07 ("Safety requirements for electrical equipment for measurement, control, Control and laboratory use ")

The initial operation of this incomplete machinery is only permitted, if it is approved that the facility or machinery in which it will be installed corresponds to the EC directive 2006/42/EC, if it applies.

Authorized representative for collection of relevant technical documents:

Claudio Usai Quality and product safety ARIS Stellantriebe GmbH Rotter Viehtrift 9 D-53842 Troisdorf

This declaration is invalid if the machinery is changed or rebuilt in a manner it was not designed for.

Troisdorf, 02. March 2015

C. Usai (Quality and product safety)

i.V. C. Sa

ARIS Stellantriebe GmbH www.stellantriebe.de

Rotter Viehtrift 9 D-53842 Troisdorf Telefon +49(0)2241-25186-0 Telefax +49(0)2241-25186-99

Technische Änderungen vorbehalten.

ARIS Stellantriebe GmbH Rotter Viehtrift 9 53842 Troisdorf / Germany Tel.: +49 2241 25186-0 Fax: +49 2241 25186-99 aris@stellantriebe.de

